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ABSTRACT :   In this paper, we will study cayley graphs of certain types of groups. It is a representative graph for groups 

using a set of generators. And we will construct a general formula to compute covering and independence numbers of certain 

types of Cayley graphs. 
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1. INTRODUCTION 

The relationship between graph theory and group theory is 

developed and improved exponentially. Using group  theory 

as tools in graph theory and its applications. 

In this part we introduce the basic definitions and concepts 

which will be used in the sequel. 

Definition 1.1: A graph Γ = (V, E) consists of a finite 

nonempty set V=V (Γ) of n points together with a prescribed 

set E of q unordered pairs of distinct points of V. 

We call V(Γ) the vertex-set of ɼ , and E(Γ) the edge-set of Γ, 

often denoted by V and E respectively , the graph Γ will be 

called an (n,q)-graph where n is the number of vertices and q 

is the number of edges in Γ . 

Each pair x= {u,v} of vertices in E (Γ) is an edge of Γ , and x 

joins u and v. Sometimes, we write x=uv, and say that u and v 

are adjacent vertices (by u adj .v), u and x are incident with 

each other, as are v and x. 

Definition 1.2: The order of Γ is the number of vertices of Γ 

and denoted by | V (Γ) |. 

Definition 1.3: A walk of graph Γ is an alternating sequence 

of points and lines  v0 x1 v1 x2 … vn-1 xn vn (and sometimes v0 

v1 … vn-1 vn), beginning and ending with points it is 

sometimes called a v0-vn walk.  

It is closed if v0 = vn and is open otherwise. The number of 

edges occurring in a walk will be called the length of the 

walk. 

Definition 1.4: A cycle is the walk with distinct n vertices and 

n≥3  

(and thus necessarily all edges are distinct). 

Definition 1.5: A path is an open walk with distinct vertices 

and edges. But if a walk with distinct edges is a trial. 

Definition 1.6: A graph is K-regular if every vertex is 

connected to k other vertices through k-edges. 

Definition 1.7: A subgraph of Γ is a graph having all of its 

vertices and edges in Γ . In other word a graph R is called a 

subgraph of a graph Γ if V (R) ≤ V (Γ) and E (R) ≤ E (Γ) . 

Definition 1.8: A simple graph is undirected graph that has no 

loops and no more than one edge between any two different 

vertices. 

Definition 1.9: A vertex and an edge are said to cover each 

other if they are incident. 

Definition 1.10: If every vertex in graph Γ adjacent with 3 

anther vertices then Γ is called cubic (trivalent graph). 

Definition 1.11: Independent set of vertices is the set of all 

vertices in Γ in which every two vertices are not adjacent, and 

the maximum number of independent vertices denoted by 

β0(Γ). 

Definition 1.12: Independent set of edges is the set of all 

edges in Γ in which every two edges are not adjacent, and the 

maximum number of independent edges denoted by β1(Γ). 

Definition 1.13: two graphs Γ 1 and Γ2  are said to be 

isomorphic (denoted by Γ 1 ≅  Γ 2 ) if there exists a 1-1 

correspondence between their vertex sets , which preserves 

adjacency . 

Definition 1.14:  A graph is connected if every pair of 

vertices there is at least the path joining them. A graph is that 

is not connected is called disconnected.  

Definition 1.15: A digraph is strongly-connected, or strong, if 

every two vertices are mutually reachable. 

Definition 1.16:  A graph is complete graph Kn if every pair 

of its vertices adjacent. Thus Kn is regular of degree n-1. 

Definition 1.17: the valency  of vertex denoted by val(vi)= 

number of edges incident to vi ( sometimes we called it 

degree of vertex vi and denoted by di or deg vi ). 

Definition 1.18: The distance dΓ (u,v) between two vertices u 

and v in Γ is the length of shortest path joining them if any ; 

otherwise dΓ (u,v)=∞ , if u=v then dΓ (u,v) = 0 (in digraph the 

distance between two vertices u and v is length of any 

shortest such path). 

Definition 1.19: The diameter d(Γ) of a connected graph Γ is 

the length of any longest geodesic (a shortest u-v path is 

called geodesic) 

i.e d(Γ) = max {d (u,v) } ; u.v ϵ Γ. 

Definition 1.20: A graph Γ is n-transitive, n≥1 if it has an n-

rout and if there is always an automorphism of Γ sending 

each n-rout onto any other n-rout. 

Definition 1.21: A group is an order pair (G,*) where G is a 

non-empty set and * is a binary associative operation on G 

which contains an identity (the natural element e) and inverse 

for each element. 

Definition 1.22: If a subset H of a group G is itself a group 

under the operation of G, we say H is a subgroup of G. 

Definition 1.23: Let G be a group and let gi ϵ G for i ϵ I if this 

{gi : i ϵ I } subgroup is all of G then {gi : i ϵ I} generates G 

and the gi are generates of G. 

Definition 1.24: Let G be a group. A subset Ω of G is a 

generating set for group G if every element of G can be 

expressed as a product of elements of set Ω.  

Definition 1.25: Let A be the finite set {1,2,…,n}. The group 

of all permutations of A is the symmetric group on n letters 

and is denoted by Sn. 

Definition 1.26: A permutation of a set A is one to one 

function from A onto A. 
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Definition 1.27: An element of a group an involution if it has 

order 2 (i.e an involution is an element a such that a ≠ e and 

a
2
 = e where e is the identity element). 

2. Group Representation by Cayley Digraphs. 

In this part we will introduce the Cayley dighrap of group. 

Provides a method of visualizing the group and its properties. 

A directed graph (or digraph) is a finite set of points called 

vertices, and a set of arrows called arcs (edges), connecting 

some of the vertices. 

Let G be finite group G and Ω a set of generators for G. 

We define a digraph Cay (Ω: G), called the Cayley digraph of 

G with generating set as follows. 

1- Each element of G is a vertex of Cay (Ω:G) 

2- For v and u in G , there is an arc(edge) from u to v if 

and only if  

u = vx , for some x ϵ Ω  

In Cayley digraph method we proposed that each generator 

by assigned a color , to know which particular generator 

connects two vertices , and that the arrow joining v to vx be 

colored with color assigned to x , we called the resulting 

figure the color graph of the group . Rather than use colors to 

distinguish the different generators, we will use solid arrows, 

dashed arrows, and dotted arrows. 

In general, if there is an arc from v to u, there need not be an 

arc from u to v, note that there are several ways to draw the 

digraph of a group given by a particular generating set. 

However, it is not the appearance of the graph that is relevant 

but the manner in which the vertices are connected. 

These connections are uniquely determined by the generating 

set. Thus, distances between vertices and angles by the arcs 

have no significance. 

It is important to note that Cayley graph of the same group 

can vary depending on which set generates the group.  

The following examples illustrate the representation of 

certain groups by Cayley digraphs. For example, 

The Cayley digraph for the symmetric group S3 with the 

generating set  

Ω = {(1,2),(1,2,3)} 

The incident function is constructed as follows  

(e)(1,2,3) = (1,2,3)                                   (1,2,3) (1,2) = (1,3) 

(1,3,2)(1,2,3) = (e)                                   (1,3,2) (1,2) = (2,3) 

(1,2,3)(1,2,3) = (1,3,2)                            (e) (1,2) = (1,2) 

(1,3) (1,2,3) = (1,2)                                  (1,2) (1,2) = (e) 

(1,2) (1,2,3) = (2,3)                                  (1,3) (1,2) = (1,2,3) 

(2,3) (1,2,3) = (1,3)                                  (2,3) (1,2) = (1,3,2) 

                                                                   •  (1,2,3) 

                                                                                                             (1,2, 3) 

                                                        (2,3) •                                              (1,2) 

                                                                

                                          (1, 2)   •                      •(1,3) 

       (1)(2)(3)        •                                                                 • (1,2,3) 

Figure 2.1 

Cay ({(1,2),(1,2,3)} : S3 ) 

From this a Cayley digraph for the symmetric group S3 with 

the generating set Ω = { (1,2) , (1,2,3) } . by looking at the 

identity element e , we can deduce that the solid arrow 

represents multiplication by (1,2,3) , because starting at the 

identity e , and following the solid arrow yields (1,2,3) . By 

the same logic, the dashed arrow represent (1,2) . The 

element (1,2,3) is of order 3 because starting at the identity 

and following the solid arrow once yields (1,2,3) , follow it 

again and you get to (1,3,2) , follow it once more and you get 

back to e, therefore applying the solid arrow three times is 

equiregular to the identity . By the principal, (1,2) had order 2 

. a quick way to see that an element in the generating set 

order 2 is to look and see if it has a double-headed arrow , i.e. 

an arrow on both sides of the arc. 

       The Cayley digraph illustrates several interesting facts 

about S3. 

The Cayley digraph shows us that S3 is non-commutative 

group. this can be seen by starting at any element , say (1,3) 

and following the solid arrow and then the dashed arrow , 

which yields e , then start at (1,3) again and follow the dashed 

arrow and then the solid arrow , this results in (1,3,2). Since e 

is different that (1, 3, 2) then S3  is non-commutative group . 

       The Multiplication table of the group can be recovered 

from the Cayley digraph. As previously stated , (1,2,3) 

corresponds to traveling the solid arrow , therefore let (1,2,3) 

= S , and by the same logic , let (1,2) = D .     

Then using this SD notation the rest of the elements can be 

represented in the same manner. (1,3) = SD , (1,3,2) = SS , 

and (2,3) =DS . Using this notation the multiplication table 

can be recovered by starting at the identity and traveling the 

corresponding arrows.  

For example (1,3,2)(1,3) = SSSD = (1,2) and (2,3)(1,3) = 

DSSD = (1,2,3). 

For example the Cayley digraph for the cyclic group Z5 with 

generating set     Ω = {1}        (Z5=<1>) 
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Figure 2.3: Cay ({1}:Z5) and Cay ({1,3}:Z5) 

 

On the left figure the Cayley digraph of Z5 with generating 

set {1} . 

In the Cayley digraph each of the elements of the group Z5 

are the vertices of the digraph . The solid arrow represents 

addition by 1 , which is the only element in the generating set 

.The Cayley digraph illustrates several things about Z5 with 

generating set {1}.  The first point of interest is that 1 is order 

5 , because if you start at the identity 0, and add 1 five times 

which equivalent to following the solid arrow five times , you 

get back to the identity . Another property that should be 

noted is Z5 is cyclic because there is only one kind of arrows , 

which implies that there exist a generating set with only one 

element . (Willis, S [6]) 

Note : In general the Cayley digraph for Zn = <1> is Cn. 

We can see more interesting examples for Cayley digraph in 

(Gallian.J.[2]) (Gross.J.[3]). 

Now we will introduce some important theorems related to 

Cayley graph of groups contain the basic constructive 

properties. 

An arbitrary graph Γ is said to be a Cayley graph if there exist 

a group G and a generating set Ω such that Γ is isomorphic to 

the Cayley graph for G and Ω . 

Theorem 2.1  

The complete graph K2n+1  is a Cayley graph for group Z2n+1 + 

with generating set {1,2,…,n} . 

Proof  

Let Γ=K2n+1 is complete graph that’s mean every vertex vi in 

V (Γ) 

Must adjacent with 2n vertices of Γ . Now when draw Cayley 

graph for group Z2n=1  with generating set {1,2,…,n} . WLOS 

first ny generating 1 we draw the cycle C2n+1  from v0 and 

traverse all the vertices in closed path to v2n+1 = v0 (since in 

Z2n+1 , 0 equal 2n+1) 

(i.e v0 adj . v1 and v0 adj. v2n) 

            Now by generating 2 we draw the all edges in the 

following form  

v0  adj. v2         v1 adj. v3 

v2 adj. v4         v3 adj. v6 

v2n adj. v1        v2n-1 adj. v0 

Following the same argument , every vertex of Γ adjacent 

with all vertices of Γ . Thus , the constructed graph is a 

complete graph K2n+1 . 

For example, the complete graph K7 is a Cayley graph for 

group Z7 with generating set {1,2,3}. Figure 2.2 illustrates 

this for K7 
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Figure 2.2 

Cay ({1,2,3}:Z7) 
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Note: the complete K2n is a Cayley graph for group Z2n with 

generating set {1,2,…,n} such that appear bidirected –arc 

with generator n . 

A graph Γ is vertex-transitive if for all vertex pairs u,v ϵ V 

(Γ) , there is an automorphism of Γ that maps u to v . 

(i.e. if Ф: Γ        Γ ; automorphism if u adjacent to v , then Ф 

(u) adjacent to v) 

Lemma 2.1 (Biggs.N.[1]): 

For any group G , the Cayley digraph is vertex-transitive . 

(i.e every Cayley digraph is vertex-transitive). 

For inctent the Petersen graph is smallest vertex-transitive but 

is not a Cayley graph, since its automorphism group has no 

transitive subgroup of order 10. 

Lemma 2.2 (Ruskey.F.[5]). 

Every Cayley digraph is strongly-connected. 

Theorem 2.2 (Sabidussi.G.[7]). 

Every vertex-transitive graph is homomorphic image of a 

Cayley graph. 

An element of a generating set Ω of order 2 called an 

involution would cause doubled edges to appear in the 

Cayley graph. Collapsing such doubled edges to a single edge 

enhances the usefulness of Cayley graphs in algebraic 

specification. This new graph known Cayley graph is the 

underlying graph of the Cayley digraph (Cayley graph). 

For example, let G be the symmetric group S3 G = {e, 

(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}. 

Let the set of generators Ω consists involutions Ω = 

{(1,2),(1,3),(2,3)} 

                                                             e• 

                                  (1,3) •                •(1,3)            • (1,2) 

                               (1,3,2) •                                       •(1,2,3) 

Figure 2.3 

Cay ({(1,2),(1,3),(2,3)}: S3). 

 

3. Covering and Independent Nubers of Cayley graphs. 

In this part we will introduce covering number and 

independent number of Cayley graph of a group. 

Theorem 3.1 (Ruskey.F.[5]). 

A set Ω = {t1,t2,…,tk} of transpositions generates Sn if and 

only if undirected graph associated with Ω (denoted by G (Ω) 

with n vertices where each edge denotes one of 

transpositions) is connected. 

For example,  

G(Ω) with 4 vertices (associated with S4) there two forms 

either 

1- Line graph (p4) 

2- Star graph (k1,3) 

That’s mean S4 generated by the set of transpositions  

1- Ω = {(1,2),(2,3),(3,4)} 

2- Ω ={(1,2)(1,3),(1,4)}          (this graph we can see in 

[5]). 

A vertex and edge are said to be cover each other are 

incident, a vertex cover set for a graph Γ is a set of vertices 

which cover all the edges of a graph Γ and the smallest 

number of vertices that cover all edges of the graph called 

vertex covering number denoted by α0(Γ) usually α0, while 

the edge cover set of Γ is a set of edges that cover all the 

vertices of Γ and the smallest number such number denoted 

by α1(Γ) usually α1 is the edge covering number. 

Note: every graph consists of tree and tree cover. (i.e Γ = T ∪ 

T
c
). 

A tree is a connected graph with no cycles, i.e spanning tree 

and the tree cover denoted by T
c
 is the set of edges which is 

cover the rest of edge of T. 

The eccentricity e (v) of a vertex v in a tree T is max d (u , v) 

for all u in T, note that the maximum eccentricity is the 

diameter and the radius r(T) is the minimum eccentricity of 

the vertices of T. 

Theorem 3.2: let Γ be a Cayley graph of a group G with k 

generators and radius r,2r = d(Γ), where d (Γ) is a diameter of 

Γ. Then 

(i) α0(Γ) = 1+ (k-1)
2i-1 

; n =  , if r is even 

integer  

(ii) α0(Γ) =  (k-1)
2i

 ; n =  , if r is odd 

integer  

Proof. 

           Let Γ be a Cayley graph of a group G with k 

generators, so Γ is  

A k-regular graph and let radius of Γ be r, so the tree of Γ has 

r levels  

L0,L1,…,Lr and there is one vertex in L0 and k vertices in L1 

and k(k-1) in L2 and k (k-1)
r-1

 vertices in Lr. 

           Let r be an odd integer, to scan the minimum number 

of vertices which cover the edge of T
c
, so we have k(k-1)

r-1
 

vertices and in level Lr-2 we have k(k-1)
r-3

 vertices i.e. choose 

off and on level following the same argument if r is odd we 

have  

K (k-1)
r-1

 + k (k-1)
r-3

 + … + k(k-1)
4
 + k (k-1)

2
 + k , so 

α0 (Γ) =  (k-1)
2i

 ; n =  

Now, if r is even, the minimum number of vertices, will be 

K (k-1)
r-1

+ k (k-1)
r-3

+ …+ k (k-1)
3
+ k (k-1)+ 1 , so 

α0 (Γ) = 1 +  (k-1)
2i+1

 ; n =  . 

Theorem 3.3: let Γ be a Cayley graph of a group G with k 

generators and radius r, 2r = d (Γ). Then edge cover number 

α1 (Γ):  

α1 (Γ) =  (k-1)
2i  

; n =  , if r is odd, and  
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α1 (Γ) = 1 +  (k-1)
2i+1

  ; n =   , if r is even. 
Proof: Let Γ be a Cayley graph of a group G is a k-regular 

and let radius r of Γ equal half the diameter of Γ. 

                                                    1         •                  L8 

                                 K        •------------•--------------•  L1 

                          K(k-1) •--------•--------•--------•--------•--------• L2 

             K(k-1)
r
 •      •   •       •    •       •    •      •    •     •   •       •  Lr    

Figure 3.1 

 

Now to cover vertices in last level Lr we need k (k-1)
r-1

 edges 

and the above set of vertices in level Lr-2 and Lr-3 we need k 

(k-1)
r-3

 edges. 

Following the same argument and if r is odd the minimum 

number of edge which cover all vertices of the tree and tree 

cover of the graph will be      (k-1)
2i

  ; n =      , 

if r is odd 

Similarly if r is even we need 1 +  (k-1)
2i+1

   ; 

 

since we need an edge to cover the root, thus the result holds. 

For example, 

to compute vertex (edge) cover number for following graphs: 

r = 2 , d = 4 , 3-regular  

α1(Γ) = 6+1 = 7 

α0(Γ) = 6+1 = 7 
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